X Weighted Congestion Games: The Price of Anarchy, Universal Worst-Case Examples, and Tightness
نویسندگان
چکیده
We characterize the price of anarchy (POA) in weighted congestion games, as a function of the allowable resource cost functions. Our results provide as thorough an understanding of this quantity as is already known for nonatomic and unweighted congestion games, and take the form of universal (cost function-independent) worst-case examples. One noteworthy byproduct of our proofs is the fact that weighted congestion games are “tight,” which implies that the worst-case price of anarchy with respect to pure Nash equilibria, mixed Nash equilibria, correlated equilibria, and coarse correlated equilibria are always equal (under mild conditions on the allowable cost functions). Another is the fact that, like nonatomic but unlike atomic (unweighted) congestion games, weighted congestion games with trivial structure already realize the worst-case POA, at least for polynomial cost functions. We also prove a new result about unweighted congestion games: the worst-case price of anarchy in symmetric games is as large as in their more general asymmetric counterparts.
منابع مشابه
Weighted Congestion Games: Price of Anarchy, Universal Worst-Case Examples, and Tightness
We characterize the price of anarchy in weighted congestion games, as a function of the allowable resource cost functions. Our results provide as thorough an understanding of this quantity as is already known for nonatomic and unweighted congestion games, and take the form of universal (cost function-independent) worst-case examples. One noteworthy byproduct of our proofs is the fact that weigh...
متن کاملRobust Price of Anarchy for Atomic Games with Altruistic Players
We study the inefficiency of equilibria for various classes of games when players are (partially) altruistic. We model altruistic behavior by assuming that player i’s perceived cost is a convex combination of 1−βi times his direct cost and βi times the social cost. Tuning the parameters βi allows smooth interpolation between purely selfish and purely altruistic behavior. Within this framework, ...
متن کاملOn the Robustness of the Approximate Price of Anarchy in Generalized Congestion Games
One of the main results shown through Roughgarden’s notions of smooth games and robust price of anarchy is that, for any sum-bounded utilitarian social function, the worst-case price of anarchy of coarse correlated equilibria coincides with that of pure Nash equilibria in the class of weighted congestion games with non-negative and non-decreasing latency functions and that such a value can alwa...
متن کاملOptimal Cost-Sharing in Weighted Congestion Games
We identify how to share costs locally in weighted congestion games with polynomial cost functions to minimize the worst-case price of anarchy (POA). First, we prove that among all cost-sharing methods that guarantee the existence of pure Nash equilibria, the Shapley value minimizes the worst-case POA. Second, if the guaranteed existence condition is dropped, then the proportional cost-sharing ...
متن کاملOn the Robust Price of Anarchy of Altruistic Games
We study the inefficiency of equilibria for several classes of games when players are (partially) altruistic. We model altruistic behavior by assuming that player i’s perceived cost is a convex combination of 1−αi times his direct cost and αi times the social cost. Tuning the parameters αi allows smooth interpolation between purely selfish and purely altruistic behavior. Within this framework, ...
متن کامل